Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development.

نویسندگان

  • Yoshimi Tokuzawa
  • Eiko Kaiho
  • Masayoshi Maruyama
  • Kazutoshi Takahashi
  • Kaoru Mitsui
  • Mitsuyo Maeda
  • Hitoshi Niwa
  • Shinya Yamanaka
چکیده

Embryonic stem (ES) cells are immortal and pluripotent cells derived from early mammalian embryos. Transcription factor Oct3/4 is essential for self-renewal of ES cells and early mouse development. However, only a few Oct3/4 target genes have been identified. In this study, we found that F-box-containing protein Fbx15 was expressed predominantly in mouse undifferentiated ES cells. Inactivation of Oct3/4 in ES cells led to rapid extinction of Fbx15 expression. Reporter gene analyses demonstrated that this ES cell-specific expression required an 18-bp enhancer element located approximately 500 nucleotides upstream from the transcription initiation site. The enhancer contained an octamer-like motif and an adjacent Sox-binding motif. Deletion or point mutation of either motif abolished the enhancer activity. The 18-bp fragment became active in NIH 3T3 cells when Oct3/4 and Sox2 were coexpressed. A gel mobility shift assay demonstrated cooperative binding of Oct3/4 and Sox2 to the enhancer sequence. In mice having a beta-galactosidase gene knocked into the Fbx15 locus, 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside staining was detected in ES cells, early embryos (two-cell to blastocyst stages), and testis tissue. Despite such specific expression of Fbx15, homozygous mutant mice showed no gross developmental defects and were fertile. Fbx15-null ES cells were normal in morphology, proliferation, and differentiation. These data demonstrate that Fbx15 is a novel target of Oct3/4 but is dispensable for ES cell self-renewal, development, and fertility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction between Oct3/4 and Cdx2 Determines Trophectoderm Differentiation

Trophectoderm (TE), the first differentiated cell lineage of mammalian embryogenesis, forms the placenta, a structure unique to mammalian development. The differentiation of TE is a hallmark event in early mammalian development, but molecular mechanisms underlying this first differentiation event remain obscure. Embryonic stem (ES) cells can be induced to differentiate into the TE lineage by fo...

متن کامل

RNA polymerase II associated factor 1/PD2 maintains self-renewal by its interaction with Oct3/4 in mouse embryonic stem cells.

Embryonic stem cells (ESCs) maintain self-renewal while ensuring a rapid response to differentiation signals, but the exact mechanism of this process remains unknown. PD2 is the human homolog of the RNA polymerase II-associated factor 1 (Paf1). The Paf1/PD2 is a member of the human PAF complex that consists of four other subunits, hCdc73, hLeo1, hCtr9, and hSki8, and is involved in the regulati...

متن کامل

I-54: New Models for Human and Mouse Genetic

The possibility to reprogram somatic human cells will greatly and deeply change genetic approach and allow the development of new tools to study genetics diseases. Indeed, our ability to study human genetic diseases suffers from the lack of valid in vitro models. The latter should (i) be originating from human primary cells, (ii) be able to self-renew for a long time and (iii) be able to differ...

متن کامل

Gene expression profiling reveals the heterogeneous transcriptional activity of Oct3/4 and its possible interaction with Gli2 in mouse embryonic stem cells.

We examined the transcriptional activity of Oct3/4 (Pou5f1) in mouse embryonic stem cells (mESCs) maintained under standard culture conditions to gain a better understanding of self-renewal in mESCs. First, we built an expression vector in which the Oct3/4 promoter drives the monocistronic transcription of Venus and a puromycin-resistant gene via the foot-and-mouth disease virus self-cleaving p...

متن کامل

Isolation, Induction of Neural and Glial Differentiation and Evaluating the Expression of Five Self Renewal Genes in Adult Mouse Neural Stem Cells

Purpose: Isolation, induction of neural and glial differentiation and evaluating the expression of Nucleostemin, ZFX, Hoxb-4, Sox-9 & Bmi-1 self renewal genes in adult mouse neural stem cells. Materials and Methods: Breifly, for isolation of neural stem cells, frontal part of adult mouse brain was minced in PBS and digested by enzyme solution, containing hyaloronidase and trypsin. Isolated cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 23 8  شماره 

صفحات  -

تاریخ انتشار 2003